Перевод: с английского на русский

с русского на английский

центр питания

  • 1 центр питания

    Большой англо-русский и русско-английский словарь > центр питания

  • 2 main substation

    Большой англо-русский и русско-английский словарь > main substation

  • 3 main substation

    Англо-русский технический словарь > main substation

  • 4 Zentrum der Elektroversorgung

    1. центр питания

    15 центр питания: Распределительное устройство генераторного напряжения электростанции или распределительное устройство вторичного напряжения электрической подстанции энергосистемы, к которым присоединены распределительные сети

    de. Zentrum der Elektroversorgung

    en. Supply centre

    fr. Centrale électrique

    Источник: ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > Zentrum der Elektroversorgung

  • 5 main substation

    1. центральная подстанция
    2. центр электропитания
    3. центр питания

     

    центр питания
    Распределительное устройство генераторного напряжения электростанции или распределительное устройство вторичного напряжения понизительной подстанции энергосистемы, к которым присоединены распределительные сети данного района.
    [ ГОСТ 13109-97]

    Это главным образом подстанции 35—220 кВ энергосистем, от которых получают питание распределительные сети 6-10 кВ. От ЦП в распределительную сеть электроэнергия передается непосредственно на шины ТП или через шины РП.
    [ http://energy-ua.com/elektricheskie-p/klassifikatsiya.html]

    Тематики

    EN

     

    центр электропитания

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    центральная подстанция

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > main substation

  • 6 main substation

    2) Электроника: центр питания
    3) Электротехника: центр электропитания

    Универсальный англо-русский словарь > main substation

  • 7 VC

    1. центр видеоконференцсвязи
    2. режим компрессии голосового сигнала
    3. регулирование объёма
    4. регулирование напряжения
    5. переменные затраты (издержки)
    6. компенсатор напряжения
    7. выбивание гидрозатвора
    8. виртуальный контейнер
    9. виртуальный канал ATM
    10. виртуальный канал
    11. виртуальное устройство
    12. виртуальное соединение
    13. виртуальная линия
    14. вакуумный контактор (пускатель)

     

    вакуумный контактор (пускатель)
    Контактор (пускатель), у которого главные контакты размыкаются и замыкаются внутри оболочки с сильно разреженной атмосферой.
    [ ГОСТ Р 50030.4.1-2002 (МЭК 60947-4-1-2000)]

    EN

    vacuum contactor (or starter)
    contactor (or starter) in which the main contacts open and close within a highly evacuated envelope
    [IEC 60947-4-1, ed. 3.0 (2009-09)]

    FR

    contacteur (ou démarreur) sous vide
    contacteur (ou démarreur) dont les contacts principaux s'ouvrent et se ferment à l'intérieur d'une enveloppe à basse pression
    [IEC 60947-4-1, ed. 3.0 (2009-09)]

    Параллельные тексты EN-RU

     

    Vacuum contactors are mainly used for the switching of motors, transformers, capacitors in AC power lines.
    They can be installed in multi-stack cubicles.
    A vacuum contactor comprises several assemblies such as switching mechanism including vacuum interrupters, magnetic actuator, high strength molded front cover and auxiliary devices.
    Actuating is available either at instantaneous or continuous excitation.

    [LS Industrial Systems]

    Вакуумные контакторы предназначены в основном для коммутации силовых цепей переменного тока электродвигателей, трансформаторов и конденсаторов.
    Контакторы пригодны для установки в комплектные устройства в несколько ярусов.
    Вакуумный контактор состоит из следующих узлов: коммутационный механизм с вакуумной дугогасительной камерой, электромагнитный привод, прочная пластмассовая передняя панель и вспомогательные устройства.
    Включение и отключение контактора возможно как подачей кратковременного, так и непрерывного сигнала на электромагнитный привод.

    [Перевод Интент]

    0616
    Вакуумный контактор среднего напряжения выдвижного исполнения с предохранителями
    Рис. LS Industrial Systems

    1

    Front cover

    Передняя панель

    2

    Fuse checking window

    Окно проверки состояния предохранителя

    3

    Connector

    Электрический соединитель

    4

    Unlock button (Interlock lever)

    Кнопка разблокировки рычага

    5

    Handle (Draw-in and Drawout)

    Ручка (предназначена для того, чтобы вдвигать и выдвигать контактор)

    6

    ON/OFF indicator

    Указатель коммутационного положения контактора (ВКЛ/ОТКЛ.)

    7

    Operation counter

    Счетчик операционных циклов

    8

    Manual trip button

    Кнопка ручного отключения контактора

    10

    Direct drawout carrier

    Выдвижной лоток

    11

    Interlock lever

    Блокировочный рычаг

    12

    Interlock button

    Блокировочная кнопка

    13

    Hole for Interlock lever insertion

    Отверстие для вставки блокировочного рычага

    14

    Test/Run indicator

    Индикатор положений Испытательное/Присоединенное

    15

    Cradle

    Корзина

    16

    CTD (Condensor trip device)

    Конденсаторный источник питания

    17

    Fuse case

    Кожух предохранителя

    Тематики

    EN

    FR

     

    виртуальная линия
    виртуальный канал

    (МСЭ-Т Y.1314).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    Синонимы

    EN

    • virtual circuit/channel
    • VC

     

    виртуальное соединение
    Услуга служб виртуальных каналов с коммутацией пакетов, в которой процедура установления соединения и процедура отбоя вызова будут определять период связи между двумя устройствами ООД, в течение которого данные пользователя будут переданы в сеть при работе в пакетном режиме. (МСЭ-Т Х.7).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    виртуальное устройство
    виртуальное соединение

    Сетевой сервис, обеспечивающий ориентированное на соединения обслуживание в зависимости от нижележащих сетевых уровней. См. также connection-oriented. Виртуальное устройство работает подобно соединению "точка-точка" или другой системе, обеспечивающей последовательную передачу пакетов. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    Синонимы

    EN

     

    виртуальный канал
    Коммуникационный канал, обеспечивающий последовательный однонаправленный перенос ячеек ATM. Соединение через UNI или NNI, обеспечивающее коммутацию различных ячеек ATM в виртуальный путь для разных получателей. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    виртуальный канал ATM
    (МСЭ-Т Н.245)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    виртуальный контейнер
    ВК представляет собой информационную структуру, используемую для обеспечения соединения трактов различных уровней в СЦИ. (МСЭ-R F.750-4).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    выбивание гидрозатвора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    компенсатор напряжения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    переменные затраты (издержки)
    Издержки, величина которых меняется в зависимости от изменения объема производства: затраты на сырье, топливо, энергию, заработную плату и т.д.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    регулирование напряжения

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    регулирование объёма

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    режим компрессии голосового сигнала
    (МСЭ-Т Y.1454).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    центр видеоконференцсвязи

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > VC

  • 8 ARC

    1. электрическая дуга
    2. формуляр учёта реагирования на аварийную сигнализацию
    3. образовывать (электрическую) дугу
    4. Корпоративный исследовательский центр
    5. класс полномочий доступа
    6. дуговой разряд
    7. вычислительная сеть для распределенной обработки данных
    8. автоматическое регулирование соотношения
    9. автоматическое повторное включение
    10. автоматическое дистанционное управление

     

    автоматическое дистанционное управление

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    Тематики

    • электротехника, основные понятия

    EN

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

     

    автоматическое регулирование соотношения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    вычислительная сеть для распределенной обработки данных
    Разработана фирмой Datapoint Corp. (США).
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    дуговой разряд
    Самостоятельный электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов и который характеризуется малым катодным падением потенциала (порядка или меньше ионизационного потенциала газа), а также интенсивным испусканием электронов катодом в основном благодаря термоэлектронной или электростатической эмиссии.
    [ ГОСТ 13820-77

    дуговой разряд
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    EN

     

    Корпоративный исследовательский центр
    (компании «Бэбкок энд Вилкокс», США)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    класс полномочий доступа

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    образовывать (электрическую) дугу

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    Тематики

    • электротехника, основные понятия

    EN

     

    формуляр учёта реагирования на аварийную сигнализацию

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    электрическая дуга
    -
    [Интент]

    EN

    (electric) arc
    self-maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission
    [IEV ref 121-13-12]

    FR

    arc (électrique), m
    conduction gazeuse autonome dans laquelle la plupart des porteurs de charge sont des électrons produits par émission électronique primaire
    [IEV ref 121-13-12]

     


    An electric arc is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through normally nonconductive media such as air. A synonym is arc discharge. An arc discharge is characterized by a lower voltage than a glow discharge, and relies on thermionic emission of electrons from the electrodes supporting the arc. The phenomenon was first described by Vasily V. Petrov, a Russian scientist who discovered it in 1802. An archaic term is voltaic arc as used in the phrase " voltaic arc lamp".
    [http://en.wikipedia.org/wiki/Electric_arc]

    Параллельные тексты EN-RU

    In the last years a lot of users have underlined the question of safety in electrical assemblies with reference to one of the most severe and destructive electrophysical phenomenon: the electric arc.
    [ABB]

    В последние годы многие потребители обращают особое внимание на безопасность НКУ, связанную с чрезвычайно разрушительным и наиболее жестко действующим электрофизическим явлением - электрической дугой.
    [Перевод Интент]

    Тематики

    • электротехника, основные понятия

    Действия

    Сопутствующие термины

    EN

    DE

    • elektrischer Lichtbogen, m
    • Lichtbogen, m

    FR

    Англо-русский словарь нормативно-технической терминологии > ARC

  • 9 DC

    1. цифровая вычислительная машина
    2. центр обработки данных
    3. система цифрового управления
    4. символ управления устройством
    5. сбросной конденсатор
    6. разработчик проекта
    7. работающий на постоянном токе
    8. пульт диспетчера
    9. прямое включение
    10. постоянный ток
    11. охладитель дренажей на ТЭС
    12. отстойник (осветлитель)
    13. осаждённая угольная частица
    14. описание (функциональная связь)
    15. контроль документооборота
    16. конденсатор выпара
    17. компенсация дисперсии
    18. канал дренажей
    19. канал (передачи) данных
    20. изменение конструкции или проекта
    21. завершение проекта
    22. дрейфовая камера
    23. двойной контакт

     

    двойной контакт

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    дрейфовая камера

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    завершение проекта

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    изменение конструкции или проекта

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    канал (передачи) данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    канал дренажей

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    компенсация дисперсии
    (МСЭ-Т G.959.1).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    конденсатор выпара

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    контроль документооборота

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    осаждённая угольная частица

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    отстойник (осветлитель)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    охладитель дренажей на ТЭС

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    постоянный ток
    Электрический ток, не изменяющийся во времени.
    Примечание — Аналогично определяют постоянные электрическое напряжение, электродвижущую силу, магнитный поток и т. д.
    [ ГОСТ Р 52002-2003]

    Параллельные тексты EN-RU

    For definition, the electric current called “direct” has a unidirectional trend constant in time.
    As a matter of fact, by analyzing the motion of the charges at a point crossed by a direct current, it results that the quantity of charge (Q) flowing through that point (or better, through that cross section) in each instant is always the same.

    [ABB]

    Постоянным током называется электрический ток, значение и направление которого, не изменяются во времени.
    Если рассматривать постоянный ток как прохождение элементарных электрических зарядов через определенную точку, то значение заряда (Q), протекающего через эту точку (а вернее через это поперечное сечение проводника) за единицу времени будет постоянным.

    [Перевод Интент]

    Direct current, which was once the main means of distributing electric power, is still widespread today in the electrical plants supplying particular industrial applications.

    The advantages in terms of settings, offered by the employ of d.c. motors and by supply through a single line, make direct current supply a good solution for railway and underground systems, trams, lifts and other transport means.

    In addition, direct current is used in conversion plants (installations where different types of energy are converted into electrical direct energy, e.g. photovoltaic plants) and, above all, in those emergency applications where an auxiliary energy source is required to supply essential services, such as protection systems, emergency lighting, wards and factories, alarm systems, computer centers, etc..

    Accumulators - for example – constitute the most reliable energy source for these services, both directly in direct current as well as by means of uninterruptible power supply units (UPS), when loads are supplied in alternating current.

    [ABB]

    Когда-то электрическая энергия передавалась и распределялась только на постоянном токе. Но и в настоящее время в отдельных отраслях промышленности постоянный ток применяется достаточно широко.

    Возможности использования двигателей постоянного тока и передачи электроэнергии по линии с меньшим числом проводников дают неоспоримые преимущества при электроснабжении железных дорог, подземного транспорта, трамваев, лифтов и т. д.

    Кроме того, существуют источники постоянного тока, являющиеся преобразователями различных видов энергии непосредственно в электрическую энергию, например, фотоэлектрические станции. Дополнительные источники постоянного тока применяют в аварийных ситуациях для питания систем защиты, аварийного освещения жилых районов и на производстве, систем сигнализации, компьютерных центров и т. д.

    Для решения указанных задач наиболее подходящим источником электроэнергии является аккумулятор. Нагрузки постоянного тока получают электропитание непосредственно от аккумулятора. Нагрузки переменного тока – от источника бесперебойного питания (ИБП), частью которого является аккумулятор.

    [Перевод Интент]

    Direct current can be generated:
    - by using batteries or accumulators where the current is generated directly through chemical processes;
    - by the rectification of alternating current through rectifiers (static conversion);
    - by the conversion of mechanical work into electrical energy using dynamos (production through rotating machines).

    [ABB]

    Постоянный ток можно получить следующими способами:
    - от аккумуляторов, в которых электрическая энергия образуется за счет происходящих внутри аккумулятора химических реакций;
    - выпрямлением переменного тока с помощью выпрямителей (статических преобразователей);
    - преобразованием механической энергии в электрическую с помощью генераторов постоянного тока (вращающихся машин).

    [Перевод Интент]

    In the low voltage field, direct current is used for different applications, which, in the following pages, have been divided into four macrofamilies including:

    - conversion into other forms of electrical energy (photovoltaic plants, above all where accumulator batteries are used);
    - electric traction (tram-lines, underground railways, etc.);
    - supply of emergency or auxiliary services;
    - particular industrial installations (electrolytic processes, etc.).

    [ABB]

    Можно выделить четыре области применения постоянного тока в низковольтных электроустановках:

    - преобразование различных видов энергии в электрическую (фотоэлектрические установки с аккумуляторными батареями);
    - энергоснабжение транспорта на электрической тяге (трамваи, метро и т. д.)
    - электропитание аварийных или вспомогательных служб;
    - специальные промышленные установки (например, с использованием электролитических процессов и т. п.).

    [Интент]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    прямое включение

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    пульт диспетчера

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    работающий на постоянном токе

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    разработчик проекта

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    сбросной конденсатор

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    символ управления устройством

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    система цифрового управления

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    центр обработки данных
    центр обработки и хранения данных
    ЦОД
    Консолидированный комплекс инженерно-технических средств, обеспечивающий безопасную централизованную обработку, хранение и предоставление данных, сервисов и приложений, а также вычислительную инфраструктуру для автоматизации бизнес-задач компании. ЦОД состоит из следующих элементов: серверного комплекса, хранилища данных, сети передачи данных, инфраструктуры, организационной структуры, системы управления.
    [ http://www.dtln.ru/slovar-terminov]

    Тематики

    Синонимы

    EN

     

    цифровая вычислительная машина

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DC

  • 10 charger

    1. узел зарядки
    2. обойма
    3. засыпной аппарат
    4. зарядный выпрямитель
    5. зарядный агрегат
    6. зарядное устройство источника бесперебойного питания
    7. зарядное устройство (в электротехнике)
    8. зарядное устройство
    9. загрузочная машина
    10. завалочная машина

     

    завалочная машина
    Машина для загрузки шихты в сталеплав. печь. Различают з. м.: напольные (рельсовые и безрельсовые) и подвесные. Напольные рельсовые з. м. используются в мартен. цехах с крупными печами (> 150 т). Напольные безрельсовые з. м. предназначены для обслуж. мартен. печей малой емкости (5—20 т). Подвесные з. м. работают, как правило, в цехах с печами средней емкости (20—150 т). М. такого типа состоит из мостового крана с гл. и вспомогат. тележками.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    загрузочная машина
    Машина для загрузки заготовок в нагреват. или термич. печи.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    зарядное устройство

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    устройство зарядное (в электротехнике)
    Устройство для зарядки электрических аккумуляторов и батарей конденсаторов.
    [РД 01.120.00-КТН-228-06]


    Зарядные устройства аккумуляторов

    Емкость и время работы аккумуляторных батарей очень сильно зависят от типа и качества зарядных устройств, применяемых для их заряда, которые обеспечивают определенный метод заряда и выбор режима разряда. Выбор хорошего зарядного устройства для пользователя аккумуляторов часто является вопросом второстепенной важности, особенно при использовании аккумуляторов в бытовой электронной технике. Однако это очень существенный вопрос, и решать его нужно сразу, чтобы впоследствии не удивляться, почему так быстро приходится менять аккумуляторы или почему они не держат заряд. В большинстве случаев деньги, вложенные в покупку хорошего зарядного устройства, оправдывают себя в результате эффективной работы и длительного срока службы аккумуляторов.

    Построение схемы простейшего зарядного устройства зависит от принципов заряда, которых, в общем, два: ограничение тока заряда и ограничение напряжения заряда. Принцип заряда с ограничением тока заряда используется при заряде никель-кадмиевых и никель-металлгидридных аккумуляторов, а принцип с ограничением напряжения заряда - при заряде свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторов.

    Весьма быстрое развитие электроники, совершенствование её элементной базы привели к созданию специализированных микросхем зарядных устройств, способные автоматически обеспечить заряд аккумулятора по заданному алгоритму и предназначенные для заряда аккумуляторов любого типа. Кроме того, отдельные типы микросхем помимо заряда обеспечивают измерение емкости аккумулятора или аккумуляторной батареи и степени разряда.

    Современные микросхемы зарядных устройств способны очень четкое прекращать процесса заряда практически по всем возможным характеристикам заряда: по скорости повышения температуры ΔТ/Δt, по пиковому напряжению на аккумуляторной батарее, по кратковременному понижению напряжения ΔU/Δt, по максимальной температуре, по сигналу таймера. Отдельные микросхемы обеспечивают контроль температуры окружающей среды и в зависимости от этого корректируют режим заряда и разряда. Например, такая коррекция происходит пошагово при изменении температуры на каждые 10 °С в пределах от -35 до +85 °С. На практике любая из этих схем, взятая за основу, обрастает дополнительными элементами, добавляющими зарядному устройству новые возможности, улучшая его характеристики.

    Зарядные устройства аккумуляторов, обеспечивающие постоянный ток ( гальваностатический режим заряда)
    Большая часть зарядных устройств обеспечивает заряд только постоянным током и потому пригодны лишь для заряда щелочных герметичных аккумуляторов (никель-металлгидридных и никель-кадмиевых). Простейшие бытовые зарядные устройства, осуществляющие заряд постоянным током, применяются для заряда от 1 до 4 аккумуляторов. Они различаются в основном конструкцией, а не принципиальной электрической схемой. Чаще всего такие зарядные устройства питаются через трансформатор от сети 220В и обеспечивают выпрямленный ток с невысоким уровнем его стабилизации. Ток практически всегда не регулируется, а время заряда определяется самим пользователем.

    Универсальность бытовых зарядных устройств, как правило, означает возможность установки в них аккумуляторов разных габаритов и обеспечение постоянного тока порядка 0,1С, по отношению к емкости, которую производитель зарядного устройства считает типичной для аккумуляторов такого типоразмера. Поэтому следует быть внимательным при установке в них аккумуляторов и правильно определять время заряда. За последние 5-7 лет быстрый прогресс промышленности привел к выпуску щелочных аккумуляторов одинаковых габаритов, но отличающихся по емкости в 3 раза. Стремление использовать простые универсальные зарядные устройства для заряда аккумуляторов все большей емкости может привести к очень продолжительному и, главное, малоэффективному заряду токами существенно меньше стандартного значения. Главным достоинством таких зарядных устройств является их низкая цена.

    Более дорогие зарядные устройства обеспечивают несколько режимов: доразряд (если он необходим), заряд и режим подзаряда. Доразряд щелочных аккумуляторов (до 1 В/ак) производится с целью снятия остаточной емкости. Однако следует учитывать, что в таких зарядных устройствах аккумуляторы, устанавливаемые в пружинные контакты, могут быть соединены последовательно, а контроль разряда выполняется по предельному разрядному напряжению U=(n х 1,0)В, где n - количество аккумуляторов в цепочке. Но после длительной эксплуатации аккумуляторы могут очень сильно различаться по емкости, и контроль по среднему напряжению для всей цепочки может привести к переразряду или переполюсованию наиболее слабых и их порче.

    Прекращение заряда или переключение в режим подзаряда (малым током для компенсации саморазряда) производится в таких зарядных устройствах автоматически в соответствии с некоторыми из тех параметров контроля, которые описаны в другой статье. При использовании таких зарядных устройств следует помнить, что не рекомендуется часто и надолго оставлять аккумуляторы в режиме компенсационного подзаряда, так как это укорачивает срок их службы.

    Некоторые зарядные устройства конструктивно оформлены так, что обеспечивают заряд как 1-4 отдельных аккумуляторов, так и 9 В батареи типоразмера 6E22 (E-BLOCK). Некоторые зарядные устройства имеют индивидуальный контроль процесса заряда (детекция -ΔU) в каждом канале, что дает возможность заряжать одновременно аккумуляторы разных типоразмеров.

    Следует заметить, что в том случае, когда пользователь может позволить себе длительный заряд никель-кадмиевых или никель-металлгидридных аккумуляторов стандартным током 0,1 С в течение 16 ч, можно использовать простейшие зарядные устройства с контролем процесса по времени. При этом, если нет уверенности в полном исчерпании емкости, следует очередной заряд сократить по времени: лучше некоторый недозаряд аккумуляторов, чем значительный перезаряд, который может привести к их деградации и преждевременном выходе из строя. Но вообще большая часть современных цилиндрических аккумуляторов может перенести случайный довольно значительный перезаряд без повреждения и последствий, хотя емкость их при последующем разряде и не повысится.

    Если же нужно максимально сократить время переподготовки аккумуляторов после исчерпания емкости, следует использовать зарядные устройства для быстрого заряда, но с высоким уровнем контроля процесса. При выборе зарядного устройства с разными параметрами контроля процесса следует учитывать, что контроль его по абсолютной величине конечного напряжения ненадежен, а из двух наиболее часто рекомендуемых производителями аккумуляторов параметров (-ΔU и ΔT/Δt) первый реализован уже во многих современных зарядных устройствах, второй - для обычных зарядных устройств редок, прежде всего из-за того, что требует наличия термодатчика, а его устанавливают только в батареях, но возможна установка термодатчика в место контакта аккумулятора с зарядным устройством. Не следует увлекаться и чересчур быстрым зарядом аккумуляторов (некоторые компании предлагают заряд за 15-30 мин). При плохом аппаратурном обеспечении даже надежного способа контроля заряда, столь быстрый заряд значительно сократит срок службы аккумулятора.

    Зарядные устройства аккумуляторов, обеспечивающие режим постоянного напряжения ( потенциостатический режим заряда) и комбинированный заряд
    Зарядные устройства для свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторных батарей должны осуществлять стабилизацию тока на первой стадии заряда и стабилизацию напряжения питания на второй. Кроме того, должен быть обеспечен контроль конца заряда, который в общем случае может выполняться либо по времени, либо по снижению тока до заданной минимальной величины.

    Зарядных устройств с такой стратегией заряда на рынке много меньше, чем зарядных устройств, реализующих режим постоянного тока (имеются ввиду зарядные устройства для непосредственного заряда аккумуляторов и батарей, а не блоки питания для сотовых телефонов, ноутбуков и т.п.).

    О зарядных устройствах никель-кадмиевых и никель-металлгидридных аккумуляторах
    Для никель-кадмиевых и никель-металлгидридных аккумуляторных батарей существует три типа зарядных устройств. К ним относятся:

    1. Зарядные устройства нормального (медленного) заряда
    2. Зарядные устройства быстрого заряда
    3. Зарядные устройства скоростного заряда

    1. Зарядные устройства нормального (медленного) заряда.

    Зарядные устройства этого типа, иногда называют ночными. Ток нормального заряда составляет 0,1С. Время заряда - 14...16 ч. При таком малом токе заряда трудно определить время окончания заряда. Поэтому обычно индикатор готовности батареи в зарядных устройствах для нормального заряда отсутствует. Они самые дешевые и предназначены только для зарядки никель-кадмиевых аккумуляторов. Для зарядки как никель-кадмиевых так и никель-металлгидридных аккумуляторов используются другие, более совершенные зарядные устройства. Если зарядный ток установлен правильно, полностью заряженная батарея становится чуть теплой на ощупь. В таком случае нет надобности немедленно отключать ее от зарядного устройства. В нем она может оставаться более чем на один день. Но все же ее отсоединение сразу после окончания заряда - лучший вариант. При применении таких зарядных устройствах проблемы возникают, если они используются для зарядки батарей малой емкости, в то время как рассчитаны для работы с более мощными батареями. В таком случае аккумуляторная батарея станет нагреваться уже по достижении 70% своей емкости. Поскольку возможность понизить ток заряда или прекратить его процесс вообще отсутствует, то во второй половине цикла заряда начнется процесс теплового разрушения аккумуляторов. Единственно возможный способ сохранить аккумуляторы, это отключить их, как только они станут горячими. В случае, если для зарядки мощной аккумуляторной батареи используется недостаточно мощное зарядное устройство, батарея в процессе заряда будет оставаться холодной и никогда не будет заряжена до конца. Тогда она потеряет часть своей емкости.

    2. Зарядные устройства быстрого заряда.
    Они позиционируются как зарядные устройства среднего класса как по скорости заряда, так и по цене. Заряд аккумуляторов в них происходит в течение 3...6 часов током около 0,ЗС. В качестве необходимого элемента эти зарядные устройства имеют схему контроля достижения аккумуляторами определенного напряжения в конце заряда и их отключения в этот момент. Такие зарядные устройства обеспечивают лучшее по сравнению с устройствами медленного заряда обслуживание аккумуляторов. В настоящее время они уступили свое место зарядным устройствам скоростного заряда.

    3. Зарядные устройства скоростного заряда.
    Такие зарядные устройства имеют несколько преимуществ перед зарядными устройствами других типов. Главное из них - меньшее время заряда. Хотя из-за большей мощности источника напряжения и необходимости использования специальных узлов контроля и управления такие зарядные устройства имеют наиболее высокие цены. Время заряда в зарядных устройствах такого типа зависит от тока заряда, степени разряда аккумуляторов, их емкости и типа. При токе заряда 1С разряженная никель-кадмиевая батарея заряжается в среднем менее чем за один час. Если же аккумуляторная батарея полностью заряжена, некоторые зарядные устройства переходят в режим подзарядки пониженным током заряда и с отключением по сигналу таймера.

    Современные устройства скоростного заряда обычно используются для зарядки как никель-кадмиевых, так и никель-металлгидридных аккумуляторных батарей. Поскольку этот процесс происходит при повышенном токе заряда и за ним необходим контроль, крайне важно, чтобы в конкретном зарядном устройстве заряжались только те аккумуляторы, которые рекомендованы для скоростного заряда производителем. Некоторые батареи маркируют электрически на заводах-изготовителях с той целью, чтобы зарядное устройство могло распознать их тип и основные электрические характеристики. После этого зарядное устройство автоматически установит величину тока и задаст алгоритм процесса заряда, соответствующие установленным в него аккумуляторам.

    Еще раз подчеркнем, что свинцово-кислотные и литий-ионные аккумуляторные батареи имеют алгоритмы заряда, не совместимые с алгоритмом заряда никель-кадмиевых и никель-металлгидридных аккумуляторов.

    [ http://www.powerinfo.ru/charge.php]

    Тематики

    EN

     

    зарядное устройство источника бесперебойного питания
    Часть ИБП, которая обеспечивает поддержание аккумуляторной батареи в заряженном состоянии. В современных ИБП зарядное устройство работает по сложному алгоритму, обеспечивающему максимальный срок эксплуатации аккумуляторной батареи ИБП, при условии рекомендованного диапазона температуры окружающей среды, и быстрый термокомпенсированный заряд.
    [ http://www.radistr.ru/misc/document423.phtml]

    EN

    battery charger
    Functional UPS module that converts the utility mains AC voltage to DC voltage for charging batteries, in order to restore the charge that was withdrawn during mains outage.
    Generally, system's Rectifier fulfills also the charging function.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Тематики

    Синонимы

    EN

     

    зарядный агрегат

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    зарядный выпрямитель

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    засыпной аппарат
    Устр-во для загрузки в домен, печь шихтовых материалов и их распределения по окружности и радиусу печи, выполняющее одноврем. ф-ции газ. затвора при давлении газа под колошником печи до 0,25 МПа. Пропускная способность з. а. совр. домен, печей достигает 1000 т/час. В конце XX в. получили наиб. распространение з. а.: конусный, конусный с подвижными колошниковыми плитами, бесконусный с лотковым распределителем шихты. Осн. конструктивные решения конусного з. а., предлож. англ. инж. Парри (неподвижная воронка и подвижный конус) в 1850 г. и амер. инж. Мак-Ки (вращающийся распределитель с малым конусом) в 1906 г., сохранились в совр. з. а. этого типа и в конусных з. а. с подвижными колошниковыми плитами, выполняющими ф-ции распределителя шихты (рис. 1). Осн. конструктивные решения, определ. более широкие возможности управляемого распределения шихты и герметизации печи (система запирающих клапанов, центр, течка, вращающ. распределит, лоток) применяются в бесконусном з. а. (БЗА) фирмы «Paul Wurt» с 1970-х гг. В мире установлено более 150 БЗА ф. «Paul Wurt», из них около 100 устройств однотрактовые. В 1990-х гг. было создано (Гипромез, ВНИИметмаш и др.) и установлено на доменных печах несколько типов одно- и двухтрактовых отечеств. БЗА.
    Установка БЗА с автоматизир. средствами контроля и управления, широкими возможностями управления радиальным и окружным распределением шихты, высокой долговечностью и ремонтопригодностью на всех вновь строящихся и реконструируемых печах стала одним из перспективных направлений повышения эффективности домен. произ-ва.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    обойма
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    charger
    Another term for (cartridge) clip.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    узел зарядки
    электризатор

    Техническое средство для нанесения электростатических зарядов на поверхность ЭФГ-фоторецептора.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > charger

  • 11 power management

    1. энергоменеджмент
    2. управление электропитанием
    3. контроль потребления электроэнергии

     

    контроль потребления электроэнергии
    контроль энергопотребления


    [Интент]

    Тематики

    Синонимы

    EN

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > power management

  • 12 branch-circuit distribution center

    1. распределительный центр для подачи питания на цепи (присоединения) к отдельным нагрузкам

     

    распределительный центр для подачи питания на цепи (присоединения) к отдельным нагрузкам

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > branch-circuit distribution center

  • 13 New York

    I
    Штат на северо-востоке США, крупнейший в группе Средне-Атлантических штатов [ Middle Atlantic States]. Граничит на востоке со штатами Вермонт, Массачусетс и Коннектикут, на юго-востоке имеет выход к Атлантическому океану, на юге граничит со штатами Пенсильвания [ Pennsylvania] и Нью-Джерси [ New Jersey], на западе имеет выход к озерам Эри [ Erie, Lake] и Онтарио [ Ontario, Lake] и граничит с канадской провинцией Онтарио, на севере с провинцией Квебек. В пределах штата находится крупнейший город, экономический и политический центр страны - Нью-Йорк [ New York City]. В состав штата входит также крупный о. Лонг-Айленд [ Long Island]. Площадь штата 141 тыс. кв. км, из них более 18 тыс. кв. км заняты внутренними водами. Население 18,9 млн. человек (третье место после Калифорнии и Техаса) (2000). Столица г. Олбани [ Albany]. Более 85 процентов населения штата горожане, более 60 процентов живут в г. Нью-Йорке. Другие крупные города: Буффало [ Buffalo], Рочестер [ Rochester], Сиракьюс [ Syracuse], Ниагара-Фоллс [ Niagara Falls], Ютика [ Utica], Скенектади [ Schenectady], Бингемтон [Binghamton], Трой [ Troy]. Большую часть территории штата занимают Аппалачское плато и пологие хребты Аппалачей [ Appalachian Mountains] - горы Адирондак [ Adirondack Mountains] и Кэтскилл [ Catskill Mountains]. Эту часть штата окаймляют широкие долины р. Хадсон [ Hudson River], Мохок [ Mohawk River], Саскуэханна [ Susquehanna River], Св. Лаврентия [ Saint Lawrence River] и др. Около 13 процентов площади занимают реки и озера [ Champlain, Lake; Finger Lakes]. На юго-западе расположены Аллеганские горы [ Allegheny Mountains]. На северо-западе, у берегов Онтарио, а также на Лонг-Айленде - низменности. Климатические условия отличаются разнообразием: на юго-востоке более мягкий и влажный климат, в горах - континентальный. Ко времени появления европейцев в этих местах жили племена ирокезской лиги [ Iroquois] и алгонкины [ Algonquian]. Освоение региона началось с исследования р. Хадсон. В Нью-Йоркской бухте [ New York Bay] в 1524 побывал Дж. да Верразано [ Verrazano, Giovanni da]. В 1609 Г. Хадсон [ Hudson, Henry], служивший у голландцев, дошел по реке до района, где ныне находится г. Олбани. Здесь в 1614-18 было основано и просуществовало первое поселение форт Нассау [Fort Nassau]. В 1621 Голландская Вест-Индская компания [ Dutch West India Co.] получила разрешение на создание Новых Нидерландов [ New Netherland], которые просуществовали до 1664, когда голландский губернатор П. Стайвесант [ Stuyvesant, Peter] под давлением британского флота сдал колонию англичанам. В 1664 из колонии была выделена территория, ныне известная как штат Нью-Джерси, через год была установлена граница между Нью-Йорком и Коннектикутом, которая в дальнейшем не изменялась. В 1688 Нью-Йорк вместе с другими колониями вошел в состав доминиона Новая Англия [ Dominion of New England]. После восстания под предводительством Я. Лизлера [ Leisler's Rebellion] власть в колонии в течение двух лет была в руках мятежников (1689-91). В 1691 после восстановления власти английской короны было принято решение о создании законодательного собрания. Нью-Йорк был центром событий в ходе войн с французами и индейцами [ French and Indian wars] и много раз, вплоть до разгрома французов в 1761, подвергался опустошительным рейдам. В период Войны за независимость [ Revolutionary War] будущий штат также занимал стратегическое положение в планах сторон. В 1776-77 на его территории происходил ряд крупных столкновений. В апреле 1777 Нью-Йорк ратифицировал Конституцию США [ Constitution, U.S.] и в июле 1778 стал 11-м по счету штатом с временной столицей в г. Кингстоне [ Kingston] (в 1797 столица перенесена в Олбани). К концу первой четверти XIX в. штат имел высокоразвитое сельское хозяйство и мануфактурную промышленность с центром в г. Нью-Йорке. Быстро развивалась транспортная сеть, чему способствовало как наличие естественных водных путей, так и само местоположение штата. В 1825 завершилось строительство канала Эри [ Erie Canal], в 1831 построена первая железная дорога, соединившая Олбани и Скенектади, а еще через 25 лет весь штат был покрыт сетью железных дорог. В 1830-40-е в обществе происходили значительные перемены: развивался процесс демократизации, активно действовали организации фермеров, женщин, аболиционистов [ abolition]. Были сильны реформаторские тенденции, породившие плеяду видных нью-йоркских политических деятелей, в том числе М. Ван Бюрена [ Van Buren, Martin], У. Сьюарда [ Seward, William Henry], Х. Грили [ Greeley, Horace]. Уже к 1820 Нью-Йорк занимал первое место среди штатов по численности населения, перед Гражданской войной [ Civil War] он стал ведущим промышленным штатом страны. Более 500 тыс. жителей штата приняли участие в войне, 50 тыс. человек погибли. После войны экономическое развитие штата продолжалось в прежнем темпе; для второй половины XIX в. характерны рост корпораций и образование гигантских трестов, наплыв иммигрантов из Европы. Происходило резкое расслоение общества, усугубились тяжелые условия труда, в политической жизни процветала коррупция. Господству Таммани-холла [ Tammany Hall] удалось положить конец только в 1930-е усилиями многих видных политиков, в том числе мэра г. Нью-Йорка Ф. Лагуардиа [ La Guardia, Fiorello Henry] (1934-45). Ведущая роль в жизни штата, да и всей страны, традиционно закрепилась за городом Нью-Йорком. Ежегодный валовый продукт только этого города превосходит ВНП большинства стран мира. Одна из наиболее серьезных проблем штата - загрязнение окружающей среды, борьба с ними ознаменована принятием действенных законодательных актов в 1960-е. Нью-Йорк занимает ведущие позиции в области банковского дела, торговли ценными бумагами, телекоммуникаций. Финансовая деятельность (в том числе страхование), торговля недвижимостью дают штату около 80 процентов валового дохода. До 1970-х, когда он сдал позиции Калифорнии, Нью-Йорк был ведущим индустриальным штатом США. Буффало - центр тяжелой промышленности (хотя многие сталелитейные заводы закрылись в 1980-х), крупнейший озерный порт. Рочестер - центр производства оптических приборов, фотооборудования. Сиракьюс - центр химической, металлургической, электротехнической и целлюлозно-бумажной промышленности, тяжелого машиностроения. Ютика и Ром [ Rome] - центры машиностроения, Бингемтон - бытовой электроники, компьютеров. Нью-Йорк - традиционный центр текстильной промышленности, полиграфии, производства продуктов питания, крупнейший морской порт. Важную роль в экономике штата играет индустрия туризма с центром в г. Нью-Йорке. Продукция сельского хозяйства имеет преимущественно местное значение: яблоки, вишня, овощи, кукуруза. У берегов Лонг-Айленда развито рыболовство. Важнейшие виды полезных ископаемых - камень, соль, песок. Высоко развита транспортная сеть.
    II

    English-Russian dictionary of regional studies > New York

  • 14 Rochester

    1) Город на западе штата Нью-Йорк, на озере Онтарио [ Ontario, Lake]. 219,7 тыс. жителей (2000), с пригородами - свыше 1 млн. человек. Промышленный и культурный центр. Порт на глубоководном пути Св. Лаврентия [St. Lawrence Seaway and Great Lakes Waterway]. Ведущий центр по производству фото- и кинотехники (фото- и кинокамеры, оборудование, реактивы и т.д.; штаб-квартира и лаборатории компании "Истмен Кодак" [ Eastman Kodak Co.]). Производство копировального и полиграфического оборудования ("Ксерокс" [ Xerox Corp.]), оптики ("Бош энд Лом" [ Bausch and Lomb]), инструментов, мужской одежды, медицинского оборудования, продуктов питания. Центр крупного сельскохозяйственного района. Рочестерский университет [ Rochester, University of], в состав которого входит Школа музыки Истмена [Eastman School of Music]; Рочестерский технологический институт [ Rochester Institute of Technology], несколько колледжей, крупные библиотеки, симфонический оркестр [Rochester Philharmonic Orchestra]. Среди достопримечательностей: Международный музей фотографии [International Museum of Photography, George Eastman House of Photography] в особняке Истмена [Eastman House], парки "Дюранд-Истмен" [Durand-Eastman Park], "Хайленд" [Highland Park] и "Сенека" [Seneca Park] (Рочестер называют Городом цветов [Flower City]), озера Фингер-Лейкс [ Finger Lakes]. Родина Дж. Истмена [ Eastman, George]. Основан в 1812, поселок под названием Рочестервилл [Rochesterville] зарегистрирован в 1817, статус города с 1834. Быстро развивался как промышленный центр во второй половине XIX в., важную роль в его развитии сыграл канал Эри [ Erie Canal]
    2) Город на юго-востоке штата Миннесота. 85,8 тыс. жителей (2000). Основан в 1854 и назван в честь города в штате Нью-Йорк. Торговый центр крупного сельскохозяйственного района (молочное животноводство). Электроника. Клиника Майо [ Mayo Clinic]. Музей искусства Среднего Запада [Rochester Art Center]

    English-Russian dictionary of regional studies > Rochester

  • 15 Abingdon

    1) Населенный пункт [ village] на северо-востоке штата Мэриленд, в 34 км к северо-востоку от г. Балтимора [ Baltimore], на р. Буш [Bush River]. Поселение основано в 1779 У. Пака [ Paca, William]. В 1785-95 здесь находился первый методистский колледж в Западном полушарии - Коуксбери [Cokesbury College]. Производство одежды. В пригороде - Абердинский испытательный полигон [ Aberdeen Proving Ground] и Химический центр Сухопутных сил [Army Chemical Center].
    2) Город [ town] на юго-западе штата Вирджиния, в 24 км к северо-востоку от Бристоля [ Bristol], у границы со штатом Теннесси, среди Аппалачей [ Appalachian Mountains]. Административный центр [ county seat] округа Вашингтон [Washington County] (с 1778). 7,7 тыс. жителей (2000). Торговый центр сельскохозяйственного района Большой Аппалачской долины [ Great Appalachian Valley] (молочное животноводство, табак, люцерна, зерновые), место проведения животноводческих аукционов. Машиностроение, металлообработка, производство продуктов питания. Горный курорт. Основан в 1765, первоначально назван "Волчьими холмами" ["Wolf Hills"] прошедшим через эти места Д. Буном [ Boone, Daniel]. Статус города и современное название с 1778 (то ли по родному городу Д. Буна, то ли по родине М. Вашингтон [ Washington, Martha Dandridge Custis]). В XVIII в. находившийся здесь Форт Блэка [Black's Fort] (1774) неоднократно подвергался нападениям со стороны индейцев чероки [ Cherokee]. В 1864 северяне [ Union Army] под командованием генерала Дж. Стоунмена [Stoneman, George] сожгли город. Среди достопримечательностей - известный театр Бартера [Barter Theater] (1933), старейший в стране театр с постоянной труппой. Местный колледж Вирджиния-Хайлендс [Virginia Highlands Community College] (1967).
    3) Город на западе центральной части штата Иллинойс, в 16 км к югу от Гейлсберга [ Galesburg]. 3,6 тыс. жителей (2000). Торговый и транспортный центр сельскохозяйственного района (скотоводство, свиноводство, птицеводство, кукуруза, ячмень, соя, фрукты, молочные продукты). Статус города с 1857.

    English-Russian dictionary of regional studies > Abingdon

  • 16 Enid

    Город на севере центральной части штата Оклахома. 47 тыс. жителей (2000). Административный центр [ county seat] округа Гарфилд [Garfield County]. Торговый центр сельскохозяйственного района (пшеница, мясомолочное животноводство) и района добычи нефти. Нефтепереработка, производство нефтяного и сельскохозяйственного оборудования, полиграфия, производство продуктов питания. Железнодорожный узел. Университет Филипса [Phillips University] (1906). Медицинский центр штата. Авиабаза ВВС Вэнс [Vance Air Force Base]. Основан в 1893 как центр бывшей индейской территории, т.н. Черокского клина [ Cherokee Strip]. Оказавшись на т.н. "неприписанных землях" [ Unassigned Lands], был заселен в течение нескольких дней в ходе набега ["run"; land rush] поселенцев.

    English-Russian dictionary of regional studies > Enid

  • 17 Portland

    1) Город на северо-западе штата Орегон. 529,1 тыс. жителей (2000), с пригородами [Greater Portland Area] 1,9 млн. жителей; самый крупный город штата. Основан в 1845 переселенцами из Новой Англии [ New England], статус города с 1851. Важный промышленный и торгово-финансовый центр Тихоокеанского Северо-Запада [ Pacific Northwest]. Порт для судов класса "река-море" на р. Колумбия [ Columbia River]; верфи. Международный аэропорт. Деревообработка, электроника; полиграфия, текстильная промышленность, производство продуктов питания. Портлендский университет [Portland, University of], Портлендский университет штата [Portland State University], Колледж Рида [Reed College], Колледж Льюиса и Кларка [ Lewis and Clark College], Колледж Конкордии [ Concordia colleges], симфонический оркестр штата [Oregon Symphony Orchestra], опера. Крупнейшая газета штата "Портленд Орегониан" [Portland Oregonian]. Штаб-квартира федерального Совета по сохранению энергетических и природных ресурсов Тихоокеанского Северо-Запада [Pacific Northwest Electric Power and Conservation Planning Council]. Сыграл роль крупного перевалочного пункта во время "золотых лихорадок" в Калифорнии и на Клондайке [ Gold Rush; Klondike Gold Rush]. В 1889 здесь проложена первая в мире линия электропередачи длиной 23 км. В годы второй мировой войны - крупный центр военного кораблестроения. Город разделен р. Уилламетт [ Willamette River] на западную и восточную стороны, соединенные 11 мостами. Среди достопримечательностей: здание "Суда пионеров" [ Pioneer Courthouse]. Музей Орегонского исторического общества [Oregon Historical Society], Американский музей рекламы [ American Advertising Museum], Портлендский художественный музей [ Portland Art Museum], Портлендский центр сценических искусств [Portland Center for the Performing Arts], лесопарк [Forest Park] (крупнейший городской лесной массив в США). Ежегодный фестиваль и выставка роз [Rose Festival, Rose Show] в июне; Портленд имеет прозвище "Город роз" ["City of Roses"]. Город обычно занимает одни из первых мест в рейтингах по качеству жизни
    2) Город на юге штата Мэн. Расположен на полуострове и нескольких островах. 64,2 тыс. жителей (2000), самый крупный город штата и торгово-финансовый центр Новой Англии [ New England] (в этой роли уступает только г. Бостону). Первое поселение основано на острове в 1623, материковое - в 1632, статус города с 1832. Морской порт в заливе Каско [Casco Bay]. База рыболовного флота, верфи. Международный аэропорт [Portland International Jetport] - крупнейший в штате. Судостроение, производство бумаги, целлюлозы, обуви; полиграфия, туризм. Отделение Мэнского университета [ Maine, University of], Колледж Уэстбрука [Westbrook College], Портлендская художественная школа [Portland School of Art]. Родина Г. Лонгфелло [ Longfellow, Henry Wadsworth]. Среди достопримечательностей: Портлендский маяк [Portland Head Light] (1791) - старейший в США, дом-музей Уодсуортов-Лонгфелло [Wadsworth-Longfellow House] и памятник поэту на названной его именем площади [Longfellow Square], Портлендский художественный музей [Portland Museum of Art], Музей исторического общества Мэна [Maine Historical Society Museum], в здании которого помещен один из крупнейших в мире органов. Вокруг города популярные курорты на озере Себаго [Sebago Lake]

    English-Russian dictionary of regional studies > Portland

  • 18 Tc

    1. функция передачи
    2. управление передачей
    3. удельная теплопроводность
    4. третичный центр
    5. техническое сотрудничество
    6. Технический комитет по стандартизации в области телекоммуникаций (входит в состав ANSI)
    7. термоэлектрический ток
    8. термопара
    9. температурная компенсация
    10. телекоммуникационный шкаф
    11. тандемное соединение
    12. со стандартными техническими характеристиками
    13. регулирование турбины
    14. подуровень конвергенции передачи
    15. подсистема транзакций
    16. период времени в часах, относящийся к работе компрессора
    17. отключающая катушка
    18. одновальная многоцилиндровая (турбина)
    19. общее содержание углерода
    20. нестационарные условия
    21. независимый расцепитель
    22. лужёная медь
    23. конвергенция передачи
    24. код магистрали
    25. канал для транспортировки отработавшего ядерного топлива на АЭС
    26. испытуемый провод
    27. испытательный центр
    28. испытательная камера
    29. закрытие с выдержкой времени
    30. время подтверждения

     

    время подтверждения

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    закрытие с выдержкой времени

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    испытательная камера

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    испытательный центр

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    испытуемый провод

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    канал для транспортировки отработавшего ядерного топлива на АЭС

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    код магистрали
    Цифра или комбинация цифр, не включающая в себя национальный (магистральный) префикс, которая идентифицирует зону нумерации в пределах страны (или группы стран, входящих в план единой нумерации или принадлежащих к конкретной географической зоне). Код магистрали должен располагаться перед номером вызываемого абонента, если вызывающий и вызываемый абоненты находятся в разных зонах нумерации. Код магистрали является частным случаем применением национального кода назначения (NDC) (МСЭ-Т Е.164).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    конвергенция передачи
    TC размещается между физической средой и клиентами G-PON. Уровень TC состоит из подуровня формирования кадра GTC и подуровня адаптации TC (МСЭ-Т G.998.3).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    лужёная медь

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    независимый расцепитель
    Расцепитель, вызывающий срабатывание аппарата при включении его реагирующего органа другим аппаратом в электрическую цепь с заданными параметрами.
    [ ГОСТ 17703-72]

    независимый расцепитель
    Расцепитель, управляемый источником напряжения.
    МЭК 60050 (441-16-41).
    Примечание. Источник напряжения может быть независимым от напряжения в главной цепи.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99) ]

    EN

    shunt release
    a release energized by a source of voltage
    NOTE The source of voltage may be independent of the voltage of the main circuit.
    [IEC 62271-100, ed. 2.0 (2008-04)]

    FR

    déclencheur shunt
    déclencheur alimenté par une source de tension
    NOTE La source de tension peut être indépendante de la tension du circuit principal.
    [IEC 62271-100, ed. 2.0 (2008-04)]


    Параллельные тексты EN-RU

    The shunt trip opens the mechanism in response to an externally applied voltage signal.
    [LS Industrial Systems]

    Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя. Отключение происходит при подаче на расцепитель напряжения.
    [Перевод Интент]

    The releases include coil clearing contacts that automatically clear the signal circuit when the breaker has tripped.
    [LS Industrial Systems]

    В состав данных расцепителей входит контакт, размыкающий цепь катушки независимого расцепителя при срабатывания автоматического выключателя.
    [Перевод Интент]

    Trip coil is a control device which trips a circuit breaker from remote place, when applying voltage continuously or instantaneously over 35ms to coil control terminals.
    [LS Industrial Systems]

    Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя при подаче на зажимы катушки расцепителя напряжения непрерывно или в виде импульса длительностью не менее 35 мс.
    [Перевод Интент]

    Current shunt trips
    Used for remote tripping of an MCB, RCD, RCBO or isolating switch at the supply end.

    [Legrand]

    Независимые расцепители
    Предназначены для дистанционного отключения модульных автоматических выключателей, УДТ, АВДТ или выключателей-разъединителей, расположенных со стороны источника питания.

    [Перевод Интент]



    В низковольтных автоматических выключателеях независимый расцепитель является дополнительной принадлежностью, которая встраивается в гнездо автоматического выключателя

    3429_1
    Дополнительные (электрические) принадлежности, встраиваемые в специальные гнезда автоматического выключателя:
    1 - Левое гнездо;
    2 - Автоматический выключатель;
    3 - Правое гнездо.
    Рис. LS Industrial Systems

    Недопустимые, нерекомендуемые

    Тематики

    Классификация

    >>>

    EN

    FR

     

    нестационарные условия

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    общее содержание углерода

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    одновальная многоцилиндровая (турбина)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    отключающая катушка
    катушка отключения


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    период времени в часах, относящийся к работе компрессора
    (напр. в системе теплонасосной установки)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    подсистема транзакций
    (МСЭ-Т Е.214).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    подуровень конвергенции передачи
    Подуровень физического уровня, обеспечивающий интерфейс между уровнем звена данных и подуровнем PMD (МСЭ-Т G.992.3; J.116).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    регулирование турбины

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    со стандартными техническими характеристиками

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    Технический комитет по стандартизации в области телекоммуникаций (входит в состав ANSI)
    См. www.tl.org.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    • TC

     

    тандемное соединение
    (МСЭ-T G.709/ Y.1331).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    телекоммуникационный шкаф
    -
    [ http://www.lanmaster.ru/SKS/DOKUMENT/568b.htm]

    телекоммуникационный шкаф
    Монтажный конструктив, имеющий в своем составе основание, боковые стенки, двери, крышку и направляющие, которые имеют отверстия, расположенные на стандартизованном расстоянии.
    Примечание. Направляющие используются для монтажа пассивного и активного оборудования, имеющего стандартизованное крепление.
    [Дмитрий Мацкевич. Справочное руководство. Основные понятия, требования, рекомендации и правила проектирования и инсталляции СКС LANMASTER. Версия 2.01]

    EN

    cabinet
    an enclosed construction intended for housing telecommunication components and equipment
    [ISO/IEC 14763-2, ed. 1.0 (2000-07)]

    См. телекоммуникационное помещение

    Тематики

    EN

     

    температурная компенсация
    термокомпенсация


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    термопара
    Чувствительный элемент авиационного датчика температуры в виде двух разнородных электрических проводников, в котором развивается термоэлектродвижущая сила при разности температур между рабочими и свободными концами.
    [ ГОСТ 23220-78]

    Тематики

    EN

     

    термоэлектрический ток

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    техническое сотрудничество

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    третичный центр

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    удельная теплопроводность

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    управление передачей

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    функция передачи
    (МСЭ-Т Y.1310).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > Tc

  • 19 SCF

    1. satellite control facility - центр управления спутниками;
    2. self-consistent field - самосогласованное поле;
    3. single catastrophic failure - единичный катастрофический отказ;
    4. single-crystal film - монокристаллическая пленка;
    5. SNAP critical facility - критическая установка систем вспомогательных ядерных источников питания;
    6. sodium cleaning facility - установка по очистке натрия;
    7. solid circuit filter - твердотельный фильтр;
    8. space-charge field - поле объёмного заряда;
    9. space-charge focusing - ионная фокусировка;
    10. spacecraft checkout facility - контрольно-проверочное оборудование;
    11. spacecraft control facility - центр управления космическими аппаратами;
    12. standard cubic foot - стандартный кубический фут;
    13. stress concentration factor - коэффициент концентрации напряжений;
    13. Sunnyvale control facility - центр управления в Саннивейле (США);
    15. switched-capacitor filter - фильтр на коммутируемых конденсаторах;
    16. system chance failure - случайный отказ системы

    Англо-русский словарь технических аббревиатур > SCF

  • 20 Lansing

    1) Город на юге центральной части штата Мичиган, на р. Гранд-Ривер [ Grand River]. Административный центр (столица) штата (с 1847). 119,1 тыс. жителей (2000). Основан в 1837. Крупный центр автомобилестроения (производство автобусов, грузовиков, моторов). Станкостроение. Торговый центр крупного сельскохозяйственного района в южном Мичигане. Университет штата [ Michigan State University]. Библиотека штата, Музей истории штата [State Historical Museum], здание капитолия штата (1878)
    2) Населенный пункт [ village] на юго-востоке штата Иллинойс, южный жилой пригород г. Чикаго [ Chicago], на р. Литл-Калумет [Little Calumet River] у границы со штатом Индиана. 28,3 тыс. жителей (2000). Сельское хозяйство пригородного типа. Производство упаковочных материалов, красителей, продуктов питания. Основан Дж. Лансингом [Lansing, John] в 1865, статус населенного пункта с 1893.

    English-Russian dictionary of regional studies > Lansing

См. также в других словарях:

  • Центр питания — (ЦП) распределительное устройство генераторного напряжения электростанции или распределительное устройство вторичного напряжения понизительной подстанции энергосистемы, к которым присоединены распределительные сети данного района... Источник:… …   Официальная терминология

  • центр питания — Распределительное устройство генераторного напряжения электростанции или распределительное устройство вторичного напряжения понизительной подстанции энергосистемы, к которым присоединены распределительные сети данного района. [ГОСТ 13109 97] Это… …   Справочник технического переводчика

  • Центр питания (ЦП) — распределительное устройство генераторного напряжения электростанции или распределительное устройство вторичного напряжения понизительной подстанции энергосистемы, к которым присоединены распределительные сети данного района. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ЦЕНТР ПИТАНИЯ — распределительное устройство генераторного напряжения электростанции или распределительное устройство вторичного напряжения понизительной подстанции энергосистемы, к которым присоединены распределительные сети данного района …   Юридическая энциклопедия

  • центр питания — 15 центр питания: Распределительное устройство генераторного напряжения электростанции или распределительное устройство вторичного напряжения электрической подстанции энергосистемы, к которым присоединены распределительные сети de. Zentrum der… …   Словарь-справочник терминов нормативно-технической документации

  • Центр питания — English: Nourishment center Распределительное устройство генераторного напряжения электростанций или распределительное устройство вторичного напряжения понизительной подстанции энергосистемы, к которым присоединены распределительные сети данного… …   Строительный словарь

  • центр питания, — 3.16 центр питания, ЦП: Распределительное устройство генераторного напряжения электростанции или распределительное устройство вторичного напряжения (6000 В и более) трансформаторной подстанции1) энергокомпании, к которому присоединены сети… …   Словарь-справочник терминов нормативно-технической документации

  • центр питания городской сети — Центром питания (ЦП) городской сети называется электростанция или подстанция, от РУ 10(6) кВ которой электрическая энергия распределяется по сети. [РД 34.20.185 94] Тематики электроснабжение в целом …   Справочник технического переводчика

  • центр питания городской сети — электростанция или подстанция, от РУ 10(6) кВ которой электрическая энергия распределяется по сети. (Смотри: РД 34.20.185 94. Министерство топлива и энергетики российской федерации. Инструкция по проектированию городских электрических сетей.)… …   Строительный словарь

  • Центр питания — (ЦП) – РУ генераторного напряжения электростанций или РУ вторичного напряжения понизительной подстанции энергосистемы, к которым присоединены распределительные сети данного района. ГОСТ 13109 97 …   Коммерческая электроэнергетика. Словарь-справочник

  • Центр — Государственное унитарное предприятие города Москвы Московский городской Центр арендного жилья . Источник …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»